Root-theory of involutive Banach-Lie algebras
نویسندگان
چکیده
منابع مشابه
amenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملContinuity of Lie Isomorphisms of Banach Algebras
We prove that if A and B are semisimple Banach algebras, then the separating subspace of every Lie isomorphism from A onto B is contained in the centre of B. Over the years, there has been considerable effort made and success in studying the structure of Lie isomorphisms of rings and Banach algebras [2–5, 7–15]. We are interested in investigating the continuity of Lie isomorphisms of Banach alg...
متن کاملHeisenberg–Lie commutation relations in Banach algebras
Given q1, q2 ∈ C \ {0}, we construct a unital Banach algebra Bq1,q2 which contains a universal normalized solution to the (q1, q2)-deformed Heisenberg–Lie commutation relations in the following specific sense: (i) Bq1,q2 contains elements b1, b2, and b3 which satisfy the (q1, q2)-deformed Heisenberg–Lie commutation relations (that is, b1b2 − q1b2b1 = b3, q2b1b3 − b3b1 = 0, and b2b3 − q2b3b2 = 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1977
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700023534